

High Resolution Electronic Measurements in Nano-Bio Science

Differential measurements When, why and how

Giorgio Ferrari

Milano, June 2025

OUTLOOK of the LESSON

Motivation

- The differential approach
- Examples of implementation
- Limitations

M. Carminati, Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors, *Sensors Actuators A* **219**, 2014.

POLITECNICO MILANO 1863

G. Ferrari – Differential measurements

Electrodes Design

FEM Numerical Simulations

ZeptoFarad capacitance detection

M. Carminati, G. Ferrari, F. Guagliardo, M. Sampietro, "ZeptoFarad capacitance detection with a miniaturized CMOS current front-end for nanoscale sensors", Sensors and Actuators A: Physical, Vol. 172, pp. 117-123 (2011)

Large sensitive area

Interdigitated electrodes:

Large sensitive area

POLITECNICO MILANO 1863

G. Ferrari – Differential measurements

How to improve the measurement?

Slow measurements using low noise sensors and amplifiers could be limited by gain fluctuations (DAC, amp., ADC) + large baseline

How to improve the measurement?

Slow measurements using low noise sensors and amplifiers could be limited by gain fluctuations (DAC, amp., ADC) + large baseline

POLITECNICO MILANO 1863

G. Ferrari – Differential measurements

The differential approach: gain fluctuations If the limitation is set by the gain fluctuations of the acquisition chain the subtraction should be implemented as soon as possible (no digital domain!)

However, if the limit is not the gain fluctuations of the acquisition chains, the first solution is more flexible (calibration of the reference path in the digital domain)

POLITECNICO MILANO 1863

Single-ended measurement

Differential measurement

Differential current sensing – general approach

✓ Amplifier optimization (gain, linearity, dynamic range)

M. Carminati, et al. "Differential configurations for the mitigation of slow fluctuations limiting the resolution of digital lock-in amplifiers," *Rev. Sci. Instrum.*, vol. 87, no. 2, p. 026102, Feb. 2016, doi: 10.1063/1.4941721.

16

Signal – reference matching: an example

given by ΔY_{DUT} Noise: $|\Delta I| \approx V_{AC} |\Delta Y_{DUT}| > \sigma \approx 100 ppm \text{ of } I = 10^{-4} V_{AC} |Y_{DUT} - Y_{REF}|$

 $|\Delta Y_{DUT}| > 10^{-4} |Y_{DUT} - Y_{REF}| \implies Y_{REF} \approx Y_{DUT} (1 \pm 1\%)$

Phase error

RFF

DUT

error

Re{I(ω)}

Assuming the ideal case of $Z_{REF} = Z_{DUT}$ we have a residual error:

$$V_{AC}\sin(\omega_0 t) - V_{AC}\sin(\omega_0 t + \phi) = -2 V_{AC}\sin\left(\frac{\phi}{2}\right)\cos\left(\omega_0 t + \frac{\phi}{2}\right)$$

$$\lim_{\|m\|(\omega)\|} \int u_{AC} \sin(\omega_0 t + \phi) = -2 V_{AC}\sin\left(\frac{\phi}{2}\right)\cos\left(\omega_0 t + \frac{\phi}{2}\right)$$

In-quadrature error!

Phase error

Assuming the ideal case of $Z_{REF} = Z_{DUT} = Z$ we have a residual error:

$$\frac{V_{AC}}{Z}\sin(\omega_0 t) - \frac{V_{AC}}{Z}\sin(\omega_0 t + \phi) = -2\frac{V_{AC}}{Z}\sin\left(\frac{\phi}{2}\right)\cos\left(\omega_0 t + \frac{\phi}{2}\right)$$

It is an error in quadrature!

For an error <1% $\rightarrow \phi$ < 0.6°

• BW >100· f_0 • If $f_0=10MHz \rightarrow$ connection length: $|L_2-L_1| < 3.3$ cm

Calibration of the reference path

Calibration may be required to have I_{DUT}≈I_{REF} in *module and phase*

- 1) Manual setting of a capacitive trimmer C_c and resistive trimmer R_c
- 2) Digital setting of the reference path

Digital control of the reference path

AD5446: 14-bit multiplying DAC, BW= 12MHz, gain temp. coef. <20 ppm /°Ć

Digital control of the reference path

AD5446: 14-bit multiplying DAC

Generation of the reference path

- + general approach
- reduces the effect of gain fluctuations of acquisition chain and stimulus signal
- limited compensation for the environmental effects (temperature, humidity,...)
- long-term stability

Fabricate the reference path with the same technology as the DUT, if possible!

Small variations over large baseline: problems

- 1) Noise of the sensor and of the preamplifier $\Delta C_{min} = 0.5 aF$
- 2) Gain fluctuations (stimulus, readout)

 $\Delta C_{min} = 600 aF$

3) Baseline fluctuations

The differential approach: baseline fluctuations The Reference must share the fluctuations of the baseline:

Differential electrode architecture

Differential electrode architecture

Design differential sensors if possible Example: MEMS capacitive sensors

Microsystem Technologies, 2013, pp 713–720, DOI: 10.1007/s00542-013-1741-z

- Doubling the signal! C_2 - C_1 =2 ΔC
- Better linearity: compensation of even non-linearity
- Well-balanced structure
- Excellent rejection of common-mode interferences (temperature,...)

POLITECNICO MILANO 1863

G. Ferrari – Differential measurements

Differential Impedance Biosensing

Resistance variation at the end of the experiment is related to the number of polystyrene NPs (diameter 800nm), i. e. to the specific nanosized biological target.

bio-target

Differential Impedance Biosensing

 $\Delta Z \propto \#np \cong \#bio-target$ bio-target

Frequency (Hz)

Resistance variation at the end of the experiment is related to the number of polystyrene NPs (diameter 800nm), i. e. to the specific nanosized biological target.

Biochip preparation for a Dengue test

Local functionalization of the active sensor — avoid non-specific binding

P. Piedimonte, et al. doi: 10.1016/j.bios.2022.113996.

1. Incubation

2. Beads counting

Results for Dengue Virus detection in human serum

- Human Serum samples positive to anti-DNV IgG antibodies
- Clinically relevant concentration
- Control: HS negative to anti-DENV IgG antibodies
- P. Piedimonte, et al, "Differential Impedance Sensing platform for high selectivity antibody detection down to few counts: A case study on Dengue Virus," Biosens. Bioelectron., vol. 202, p. 113996, Apr. 2022, doi: 10.1016/j.bios.2022.113996.

Differential biosensors

Ex.: silicon nanowire DNA sensor

- AC measurement (LIA) for reducing the 1/f noise of the nanowire
- suffer from drift due to ion migration at the gate-oxide interface → differential meas.

A. De, et al. "Integrated label-free silicon nanowire sensor arrays for (bio)chemical analysis," *Analyst*, vol. 138, no. 11, pp. 3221–3229, 2013, doi: 10.1039/c3an36586g.

Laser-based optical spectroscopy

POLITECNICO MILANO 1863

Balanced optical detection

Laser-based optical spectroscopy

- + Cancellation of the optical intensity fluctuations
- + Optimization of the readout circuits
- Require a calibration for any change in the sample
- Each photodiode has an independent shot noise
 - \rightarrow doubling the minimum theoretical noise

POLITECNICO MILANO 1863

Drawbacks of the differential approach

- While differential measurements offer several advantages, there are also some drawbacks to consider:
- Additional complexity for the generation of the reference path
- Calibration may be required for a well-matched structure
- Sensor response vs. frequency (spectroscopy) or temperature or bias,... could be difficult
- Increase the minimum theoretical noise
 - Use a differential approach when you are limited by gain fluctuations or environmental effects
 - design a differential sensor with a doubling of the signal!
- Pay attention to the phase response and propagation delays

37

Summary

- A large baseline causes difficulties:
 - Gain fluctuations
 - Baseline fluctuations
 - Gain, linearity, and dynamic range of the acquisition chain
- Differential approach
 - Subtract the large baseline
 - Design a differential sensor if possible! (or use a dummy sensor)
 - A calibration may be required

• Alternative: ratiometric approach

